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1
ESTIMATING OBJECT PROPERTIES USING
VISUAL IMAGE DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to, and is a continuation
of, U.S. patent application Ser. No. 16/279,657 titled “ESTI-
MATING OBIJECT PROPERTIES USING VISUAL
IMAGE DATA” and filed on Feb. 19, 2019, the disclosure
of which is hereby incorporated herein by reference in its
entirety.

BACKGROUND OF THE INVENTION

Autonomous driving systems typically rely on mounting
numerous sensors including a collection of vision and emit-
ting distance sensors (e.g., radar sensor, lidar sensor, ultra-
sonic sensor, etc.) on a vehicle. The data captured by each
sensor is then gathered to help understand the vehicle’s
surrounding environment and to determine how to control
the vehicle. Vision sensors can be used to identify objects
from captured image data and emitting distance sensors can
be used to determine the distance of the detected objects.
Steering and speed adjustments can be applied based on
detected obstacles and clear drivable paths. But as the
number and types of sensors increases, so does the com-
plexity and cost of the system. For example, emitting
distance sensors such as lidar are often costly to include in
a mass market vehicle. Moreover, each additional sensor
increases the input bandwidth requirements for the autono-
mous driving system. Therefore, there exists a need to find
the optimal configuration of sensors on a vehicle. The
configuration should limit the total number of sensors with-
out limiting the amount and type of data captured to accu-
rately describe the surrounding environment and safely
control the vehicle.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a block diagram illustrating an embodiment of
a deep learning system for autonomous driving.

FIG. 2 is a flow diagram illustrating an embodiment of a
process for creating training data for predicting object
properties.

FIG. 3 is a flow diagram illustrating an embodiment of a
process for training and applying a machine learning model
for autonomous driving.

FIG. 4 is a flow diagram illustrating an embodiment of a
process for training and applying a machine learning model
for autonomous driving.

FIG. 5 is a diagram illustrating an example of capturing
auxiliary sensor data for training a machine learning net-
work.

FIG. 6 is a diagram illustrating an example of predicting
object properties.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such
as a processor configured to execute instructions stored on
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and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that is tem-
porarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

A machine learning training technique for generating
highly accurate machine learning results from vision data is
disclosed. Using auxiliary sensor data, such as radar and
lidar results, the auxiliary data is associated with objects
identified from the vision data to accurately estimate object
properties such as object distance. In various embodiments,
the collection and association of auxiliary data with vision
data is done automatically and requires little, if any, human
intervention. For example, objects identified using vision
techniques do not need to be manually labeled, significantly
improving the efficiency of machine learning training.
Instead, the training data can be automatically generated and
used to train a machine learning model to predict object
properties with a high degree of accuracy. For example, the
data may be collected automatically from a fleet of vehicles
by collecting snapshots of the vision data and associated
related data, such as radar data. In some embodiments, only
a subset of the vision-radar related association targets are
sampled. The collected fusion data from the fleet of vehicles
is automatically collected and used to train neural nets to
mimic the captured data. The trained machine learning
model can be deployed to vehicles for accurately predicting
object properties, such as distance, direction, and velocity,
using only vision data. For example, once the machine
learning model has been trained to be able to determine an
object distance using images of a camera without a need of
a dedicated distance sensor, it may become no longer
necessary to include a dedicated distance sensor in an
autonomous driving vehicle. When used in conjunction with
a dedicated distance sensor, this machine learning model can
be used as a redundant or a secondary distance data source
to improve accuracy and/or provide fault tolerance. The
identified objects and corresponding properties can be used
to implement autonomous driving features such as self-
driving or driver-assisted operation of a vehicle. For
example, an autonomous vehicle can be controlled to avoid
a merging vehicle identified using the disclosed techniques.
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A system comprising one or more processors coupled to
memory is configured to receive image data based on an
image captured using a camera of a vehicle. For example, a
processor such as an artificial intelligence (AI) processor
installed on an autonomous vehicle receives image data
from a camera, such as a forward-facing camera of the
vehicle. Additional cameras such as side-facing and rear-
facing cameras can be used as well. The image data is
utilized as a basis of an input to a machine learning trained
model to at least in part identify a distance of an object from
the vehicle. For example, the captured image is used as an
input to a machine learning model such as a model of a deep
learning network running on the Al processor. The model is
used to predict the distance of objects identified in the image
data. Surrounding objects such as vehicles and pedestrians
can be identified from the image data and the accuracy and
direction are inferred using a deep learning system. In
various embodiments, the trained machine learning model
has been trained using a training image and a correlated
output of an emitting distance sensor. Emitting distance
sensors may emit a signal (e.g., radio signal, ultrasonic
signal, light signal, etc.) in detecting a distance of an object
from the sensor. For example, a radar sensor mounted to a
vehicle emits radar to identify the distance and direction of
surrounding obstacles. The distances are then correlated to
objects identified in a training image captured from the
vehicle’s camera. The associated training image is annotated
with the distance measurements and used to train a machine
learning model. In some embodiments, the model is used to
predict additional properties such as an object’s velocity. For
example, the velocity of objects determined by radar is
associated with objects in the training image to train a
machine learning model to predict object velocities and
directions.

In some embodiments, a vehicle is equipped with sensors
to capture the environment of the vehicle and vehicle
operating parameters. The captured data includes vision data
(such as video and/or still images) and additional auxiliary
data such as radar, lidar, inertia, audio, odometry, location,
and/or other forms of sensor data. For example, the sensor
data may capture vehicles, pedestrians, vehicle lane lines,
vehicle traffic, obstacles, traffic control signs, traffic sounds,
etc. Odometry and other similar sensors capture vehicle
operating parameters such as vehicle speed, steering, orien-
tation, change in direction, change in location, change in
elevation, change in speed, etc. The captured vision and
auxiliary data is transmitted from the vehicle to a training
server for creating a training data set. In some embodiments,
the transmitted vision and auxiliary data is correlated and
used to automatically generate training data. The training
data is used to train a machine learning model for generating
highly accurate machine learning results. In some embodi-
ments, a time series of captured data is used to generate the
training data. A ground truth is determined based on a group
of time series elements and is used to annotate at least one
of the elements, such as a single image, from the group. For
example, a series of images and radar data for a time period,
such as 30 seconds, are captured. A vehicle identified from
the image data and tracked across the time series is associ-
ated with a corresponding radar distance and direction from
the time series. The associated auxiliary data, such as radar
distance data, is associated with the vehicle after analyzing
the image and distance data captured for the time series. By
analyzing the image and auxiliary data across the time
series, ambiguities such as multiple objects with similar
distances can be resolved with a high degree of accuracy to
determine a ground truth. For example, when using only a
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single captured image, there may be insufficient correspond-
ing radar data to accurately estimate the different distances
of two cars in the event one car occludes another or when
two cars are close together. By tracking the cars over a time
series, however, the distances identified by radar can be
properly associated with the correct cars as the cars separate,
travel in different directions, and/or travel at different
speeds, etc. In various embodiments, once the auxiliary data
is properly associated with an object, one or more images of
the time series are converted to training images and anno-
tated with the corresponding ground truth such as the
distance, velocity, and/or other appropriate object properties.

In various embodiments, a machine learning model
trained using auxiliary sensor data can accurately predict the
result of an auxiliary sensor without the need for the physical
auxiliary sensor. For example, training vehicles can be
equipped with auxiliary sensors, including expensive and/or
difficult to operate sensors, for collecting training data. The
training data can then be used to train a machine learning
model for predicting the result of an auxiliary sensor, such
as a radar, lidar, or another sensor. The trained model is then
deployed to vehicles, such as production vehicles, that only
require vision sensors. The auxiliary sensors are not required
but can be used as a secondary data source. There are many
advantages to reducing the number of sensors including the
difficulty in re-calibrating sensors, maintenance of the sen-
sors, the cost of additional sensors, and/or additional band-
width and computational requirements for additional sen-
sors, among others. In some embodiments, the trained model
is used in the case of auxiliary sensors failing. Instead of
relying on additional auxiliary sensors, the trained machine
learning model uses input from one or more vision sensors
to predict the result of the auxiliary sensors. The predicted
results can be used for implementing autonomous driving
features that require detecting objects (e.g., pedestrians,
stationary vehicles, moving vehicles, curbs, obstacles, road
barriers, etc.) and their distance and direction. The predicted
results can be used to detect the distance and direction of
traffic control objects such as traffic lights, traffic signs,
street signs, etc. Although vision sensors and object distance
are used in the previous examples, alternative sensors and
predicted properties are possible as well.

FIG. 1 is a block diagram illustrating an embodiment of
a deep learning system for autonomous driving. The deep
learning system includes different components that may be
used together for self-driving and/or driver-assisted opera-
tion of a vehicle as well as for gathering and processing data
for training a machine learning model. In various embodi-
ments, the deep learning system is installed on a vehicle and
data captured from the vehicle can be used to train and
improve the deep learning system of the vehicle or other
similar vehicles. The deep learning system may be used to
implement autonomous driving functionality including iden-
tifying objects and predicting object properties such as
distance and direction using vision data as input.

In the example shown, deep learning system 100 is a deep
learning network that includes vision sensors 101, additional
sensors 103, image pre-processor 105, deep learning net-
work 107, artificial intelligence (Al) processor 109, vehicle
control module 111, and network interface 113. In various
embodiments, the different components are communica-
tively connected. For example, image data captured from
vision sensors 101 is fed to image pre-processor 105.
Processed sensor data of image pre-processor 105 is fed to
deep learning network 107 running on Al processor 109. In
some embodiments, sensor data from additional sensors 103
is used as an input to deep learning network 107. The output
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of deep learning network 107 running on Al processor 109
is fed to vehicle control module 111. In various embodi-
ments, vehicle control module 111 is connected to and
controls the operation of the vehicle such as the speed,
braking, and/or steering, etc. of the vehicle. In various
embodiments, sensor data and/or machine learning results
can be sent to a remote server (not shown) via network
interface 113. For example, sensor data, such as data cap-
tured from vision sensors 101 and/or additional sensors 103,
can be transmitted to a remote training server via network
interface 113 to collect training data for improving the
performance, comfort, and/or safety of the vehicle. In vari-
ous embodiments, network interface 113 is used to commu-
nicate with remote servers, to make phone calls, to send
and/or receive text messages, and to transmit sensor data
based on the operation of the vehicle, among other reasons.
In some embodiments, deep learning system 100 may
include additional or fewer components as appropriate. For
example, in some embodiments, image pre-processor 105 is
an optional component. As another example, in some
embodiments, a post-processing component (not shown) is
used to perform post-processing on the output of deep
learning network 107 before the output is provided to
vehicle control module 111.

In some embodiments, vision sensors 101 include one or
more camera sensors for capturing image data. In various
embodiments, vision sensors 101 may be affixed to a
vehicle, at different locations of the vehicle, and/or oriented
in one or more different directions. For example, vision
sensors 101 may be affixed to the front, sides, rear, and/or
roof, etc. of the vehicle in forward-facing, rear-facing,
side-facing, etc. directions. In some embodiments, vision
sensors 101 may be image sensors such as high dynamic
range cameras and/or cameras with different fields of view.
For example, in some embodiments, eight surround cameras
are affixed to a vehicle and provide 360 degrees of visibility
around the vehicle with a range of up to 250 meters. In some
embodiments, camera sensors include a wide forward cam-
era, a narrow forward camera, a rear view camera, forward
looking side cameras, and/or rearward looking side cameras.

In some embodiments, vision sensors 101 are not
mounted to the vehicle with vehicle control module 111. For
example, vision sensors 101 may be mounted on neighbor-
ing vehicles and/or affixed to the road or environment and
are included as part of a deep learning system for capturing
sensor data. In various embodiments, vision sensors 101
include one or more cameras that capture the surrounding
environment of the vehicle, including the road the vehicle is
traveling on. For example, one or more front-facing and/or
pillar cameras capture images of objects such as vehicles,
pedestrians, traffic control objects, roads, curbs, obstacles,
etc. in the environment surrounding the vehicle. As another
example, cameras capture a time series of image data
including image data of neighboring vehicles including
those attempting to cut into the lane the vehicle is traveling
in. Vision sensors 101 may include image sensors capable of
capturing still images and/or video. The data may be cap-
tured over a period of time, such as a sequence of captured
data over a period of time, and synchronized with other
vehicle data including other sensor data. For example, image
data used to identify objects may be captured along with
radar and odometry data over a period of 15 seconds or
another appropriate period.

In some embodiments, additional sensors 103 include
additional sensors for capturing sensor data in addition to
vision sensors 101. In various embodiments, additional
sensors 103 may be affixed to a vehicle, at different locations
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of the vehicle, and/or oriented in one or more different
directions. For example, additional sensors 103 may be
affixed to the front, sides, rear, and/or roof, etc. of the vehicle
in forward-facing, rear-facing, side-facing, etc. directions. In
some embodiments, additional sensors 103 may be emitting
sensors such as radar, ultrasonic, and/or lidar sensors. In
some embodiments, additional sensors 103 include non-
visual sensors. Additional sensors 103 may include radar,
audio, lidar, inertia, odometry, location, and/or ultrasonic
sensors, among others. For example, twelve ultrasonic sen-
sors may be affixed to the vehicle to detect both hard and soft
objects. In some embodiments, a forward-facing radar is
utilized to capture data of the surrounding environment. In
various embodiments, radar sensors are able to capture
surrounding detail despite heavy rain, fog, dust, and other
vehicles.

In some embodiments, additional sensors 103 are not
mounted to the vehicle with vehicle control module 111. For
example, similar to vision sensors 101, additional sensors
103 may be mounted on neighboring vehicles and/or affixed
to the road or environment and are included as part of a deep
learning system for capturing sensor data. In some embodi-
ments, additional sensors 103 include one or more sensors
that capture the surrounding environment of the vehicle,
including the road the vehicle is traveling on. For example,
a forward-facing radar sensor captures the distance data of
objects in the forward field of view of the vehicle. Additional
sensors may capture odometry, location, and/or vehicle
control information including information related to vehicle
trajectory. Sensor data may be captured over a period of
time, such as a sequence of captured data over a period of
time, and associated with image data captured from vision
sensors 101. In some embodiments, additional sensors 103
include location sensors such as global position system
(GPS) sensors for determining the vehicle’s location and/or
change in location. In various embodiments, one or more
sensors of additional sensors 103 are optional and are
included only on vehicles designed for capturing training
data. Vehicles without one or more sensors of additional
sensors 103 can simulate the results of additional sensors
103 by predicting the output using a trained machine learn-
ing model and the techniques disclosed herein. For example,
vehicles without a forward-facing radar or lidar sensor can
predict the results of the optional sensor using image data by
applying a trained machine learning model, such as the
model of deep learning network 107.

In some embodiments, image pre-processor 105 is used to
pre-process sensor data of vision sensors 101. For example,
image pre-processor 105 may be used to pre-process the
sensor data, split sensor data into one or more components,
and/or post-process the one or more components. In some
embodiments, image pre-processor 105 is a graphics pro-
cessing unit (GPU), a central processing unit (CPU), an
image signal processor, or a specialized image processor. In
various embodiments, image pre-processor 105 is a tone-
mapper processor to process high dynamic range data. In
some embodiments, image pre-processor 105 is imple-
mented as part of artificial intelligence (AI) processor 109.
For example, image pre-processor 105 may be a component
of Al processor 109. In some embodiments, image pre-
processor 105 may be used to normalize an image or to
transform an image. For example, an image captured with a
fisheye lens may be warped and image pre-processor 105
may be used to transform the image to remove or modify the
warping. In some embodiments, noise, distortion, and/or
blurriness is removed or reduced during a pre-processing
step. In various embodiments, the image is adjusted or
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normalized to improve the result of machine learning analy-
sis. For example, the white balance of the image is adjusted
to account for different lighting operating conditions such as
daylight, sunny, cloudy, dusk, sunrise, sunset, and night
conditions, among others.

In some embodiments, deep learning network 107 is a
deep learning network used for determining vehicle control
parameters including analyzing the driving environment to
determine objects and their corresponding properties such as
distance, velocity, or another appropriate parameter. For
example, deep learning network 107 may be an artificial
neural network such as a convolutional neural network
(CNN) that is trained on input such as sensor data and its
output is provided to vehicle control module 111. As one
example, the output may include at least a distance estimate
of detected objects. As another example, the output may
include at least potential vehicles that are likely to merge
into the vehicle’s lane, their distances, and their velocities.
In some embodiments, deep learning network 107 receives
as input at least image sensor data, identifies objects in the
image sensor data, and predicts the distance of the objects.
Additional input may include scene data describing the
environment around the vehicle and/or vehicle specifica-
tions such as operating characteristics of the vehicle. Scene
data may include scene tags describing the environment
around the vehicle, such as raining, wet roads, snowing,
muddy, high density traffic, highway, urban, school zone,
etc. In some embodiments, the output of deep learning
network 107 is a three-dimensional representation of a
vehicle’s surrounding environment including cuboids rep-
resenting objects such as identified objects. In some embodi-
ments, the output of deep learning network 107 is used for
autonomous driving including navigating a vehicle towards
a target destination.

In some embodiments, artificial intelligence (Al) proces-
sor 109 is a hardware processor for running deep learning
network 107. In some embodiments, Al processor 109 is a
specialized Al processor for performing inference using a
convolutional neural network (CNN) on sensor data. Al
processor 109 may be optimized for the bit depth of the
sensor data. In some embodiments, Al processor 109 is
optimized for deep learning operations such as neural net-
work operations including convolution, dot-product, vector,
and/or matrix operations, among others. In some embodi-
ments, Al processor 109 is implemented using a graphics
processing unit (GPU). In various embodiments, Al proces-
sor 109 is coupled to memory that is configured to provide
the Al processor with instructions which when executed
cause the Al processor to perform deep learning analysis on
the received input sensor data and to determine a machine
learning result, such as an object distance, used for autono-
mous driving. In some embodiments, Al processor 109 is
used to process sensor data in preparation for making the
data available as training data.

In some embodiments, vehicle control module 111 is
utilized to process the output of artificial intelligence (Al)
processor 109 and to translate the output into a vehicle
control operation. In some embodiments, vehicle control
module 111 is utilized to control the vehicle for autonomous
driving. In various embodiments, vehicle control module
111 can adjust speed, acceleration, steering, braking, etc. of
the vehicle. For example, in some embodiments, vehicle
control module 111 is used to control the vehicle to maintain
the vehicle’s position within a lane, to merge the vehicle into
another lane, to adjust the vehicle’s speed and lane posi-
tioning to account for merging vehicles, etc.
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In some embodiments, vehicle control module 111 is used
to control vehicle lighting such as brake lights, turns signals,
headlights, etc. In some embodiments, vehicle control mod-
ule 111 is used to control vehicle audio conditions such as
the vehicle’s sound system, playing audio alerts, enabling a
microphone, enabling the horn, etc. In some embodiments,
vehicle control module 111 is used to control notification
systems including warning systems to inform the driver
and/or passengers of driving events such as a potential
collision or the approach of an intended destination. In some
embodiments, vehicle control module 111 is used to adjust
sensors such as vision sensors 101 and additional sensors
103 of a vehicle. For example, vehicle control module 111
may be used to change parameters of one or more sensors
such as modifying the orientation, changing the output
resolution and/or format type, increasing or decreasing the
capture rate, adjusting the captured dynamic range, adjusting
the focus of a camera, enabling and/or disabling a sensor,
etc. In some embodiments, vehicle control module 111 may
be used to change parameters of image pre-processor 105
such as modifying the frequency range of filters, adjusting
feature and/or edge detection parameters, adjusting channels
and bit depth, etc. In various embodiments, vehicle control
module 111 is used to implement self-driving and/or driver-
assisted control of a vehicle. In some embodiments, vehicle
control module 111 is implemented using a processor
coupled with memory. In some embodiments, vehicle con-
trol module 111 is implemented using an application-spe-
cific integrated circuit (ASIC), a programmable logic device
(PLD), or other appropriate processing hardware.

In some embodiments, network interface 113 is a com-
munication interface for sending and/or receiving data
including training data. In various embodiments, a network
interface 113 includes a cellular or wireless interface for
interfacing with remote servers, to transmit sensor data, to
transmit potential training data, to receive updates to the
deep learning network including updated machine learning
models, to connect and make voice calls, to send and/or
receive text messages, etc. For example, network interface
113 may be used to transmit sensor data captured for use as
potential training data to a remote training server for training
a machine learning model. As another example, network
interface 113 may be used to receive an update for the
instructions and/or operating parameters for vision sensors
101, additional sensors 103, image pre-processor 105, deep
learning network 107, Al processor 109, and/or vehicle
control module 111. A machine learning model of deep
learning network 107 may be updated using network inter-
face 113. As another example, network interface 113 may be
used to update firmware of vision sensors 101 and additional
sensors 103 and/or operating parameters of image pre-
processor 105 such as image processing parameters.

FIG. 2 is a flow diagram illustrating an embodiment of a
process for creating training data for predicting object
properties. For example, image data is annotated with sensor
data from additional auxiliary sensors to automatically cre-
ate training data. In some embodiments, a time series of
elements made up of sensor and related auxiliary data is
collected from a vehicle and used to automatically create
training data. In various embodiments, the process of FIG.
2 is used to automatically label training data with corre-
sponding ground truths. The ground truth and image data are
packaged as training data to predict properties of objects
identified from the image data. In various embodiments, the
sensor and related auxiliary data are captured using the deep
learning system of FIG. 1. For example, in various embodi-
ments, the sensor data is captured from vision sensors 101
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of FIG. 1 and related data is captured from additional
sensors 103 of FIG. 1. In some embodiments, the process of
FIG. 2 is performed to automatically collect data when
existing predictions are incorrect or can be improved. For
example, a prediction is made by an autonomous vehicle to
determine one or more object properties, such as distance
and direction, from vision data. The prediction is compared
to distance data received from an emitting distance sensor.
A determination can be made whether the prediction is
within an acceptable accuracy threshold. In some embodi-
ments, a determination is made that the prediction can be
improved. In the event the prediction is not sufficiently
accurate, the process of FIG. 2 can be applied to the
prediction scenario to create a curated set of training
examples for improving the machine learning model.

At 201, vision data is received. The vision data may be
image data such as video and/or still images. In various
embodiments, the vision data is captured at a vehicle and
transmitted to a training server. The vision data may be
captured over a period of time to create a time series of
elements. In various embodiments, the elements include
timestamps to maintain an ordering of the elements. By
capturing a time series of elements, objects in the time series
can be tracked across the time series to better disambiguate
objects that are difficult to identify from a single input
sample, such as a single input image and corresponding
related data. For example, a pair of oncoming headlights
may appear at first to both belong to a single vehicle but in
the event the headlights separate, each headlight is identified
as belonging to a separate motorcycle. In some scenarios,
objects in the image data are easier to distinguish than
objects in the auxiliary related data received at 203. For
example, it may be difficult to disambiguate using only
distance data the estimated distance of a van from a wall that
the van is alongside of. However, by tracking the van across
a corresponding time series of image data, the correct
distance data can be associated with the identified van. In
various embodiments, sensor data captured as a time series
is captured in the format that a machine learning model uses
as input. For example, the sensor data may be raw or
processed image data.

In various embodiments, in the event a time series of data
is received, the time series may be organized by associating
a timestamp with each element of the time series. For
example, a timestamp is associated with at least the first
element in a time series. The timestamp may be used to
calibrate time series elements with related data such as data
received at 203. In various embodiments, the length of the
time series may be a fixed length of time, such as 10 seconds,
30 seconds, or another appropriate length. The length of time
may be configurable. In various embodiments, the time
series may be based on the speed of the vehicle, such as the
average speed of the vehicle. For example, at slower speeds,
the length of time for a time series may be increased to
capture data over a longer distance traveled than would be
possible if using a shorter time length for the same speed. In
some embodiments, the number of elements in the time
series is configurable. The number of elements may be based
on the distance traveled. For example, for a fixed time
period, a faster moving vehicle includes more elements in
the time series than a slower moving vehicle. The additional
elements increase the fidelity of the captured environment
and can improve the accuracy of the predicted machine
learning results. In various embodiments, the number of
elements is adjusted by adjusting the frames per second a
sensor captures data and/or by discarding unneeded inter-
mediate frames.
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At 203, data related to the received vision data is received.
In various embodiments, the related data is received at a
training server along with the vision data received at 201. In
some embodiments, the related data is sensor data from
additional sensors of the vehicle, such as ultrasonic, radar,
lidar, or other appropriate sensors. The related data may be
distance, direction, velocity, location, orientation, change in
location, change in orientation, and/or other related data
captured by the vehicle’s additional sensors. The related data
may be used to determine a ground truth for features
identified in the vision data received at 201. For example,
distance and direction measurements from radar sensors are
used to determine object distances and directions for objects
identified in the vision data. In some embodiments, the
related data received is a time series of data corresponding
to a time series of vision data received at 201.

In some embodiments, the data related to the vision data
includes map data. For example, offline data such as road
and/or satellite level map data may be received at 203. The
map data may be used to identify features such as roads,
vehicle lanes, intersections, speed limits, school zones, etc.
For example, the map data can describe the path of vehicle
lanes. Using the estimated location of identified vehicles in
vehicles lanes, estimated distances for the detected vehicles
can be determined/corroborated. As another example, the
map data can describe the speed limit associated with
different roads of the map. In some embodiments, the speed
limit data may be used to validate velocity vectors of
identified vehicles.

At 205, objects in the vision data are identified. In some
embodiments, the vision data is used as an input to identify
objects in the surrounding environment of the vehicle. For
example, vehicles, pedestrians, obstacles, etc. are identified
from the vision data. In some embodiments, the objects are
identified using a deep learning system with a trained
machine learning model. In various embodiments, bounding
boxes are created for identified objects. The bounding boxes
may be two-dimensional bounding boxes or three-dimen-
sional bounding boxes, such as cuboids, that outline the
exterior of the identified object. In some embodiments,
additional data is used to help identify the objects, such as
the data received at 203. The additional data may be used to
increase the accuracy in object identification.

At 207, a ground truth is determined for identified objects.
Using the related data received at 203, ground truths are
determined for the object identified at 205 from the vision
data received at 201. In some embodiments, the related data
is depth (and/or distance) data of the identified objects. By
associating the distance data with the identified objects, a
machine learning model can be trained to estimate object
distances by using the related distance data as the ground
truth for detected objects. In some embodiments, the dis-
tances are for detected objects such as an obstacle, a barrier,
amoving vehicle, a stationary vehicle, traffic control signals,
pedestrians, etc. and used as the ground truth for training. In
addition to distance, the ground truth for other object param-
eters such as direction, velocity, acceleration, etc. may be
determined. For example, accurate distances and directions
are determined as ground truths for identified objects. As
another example, accurate velocity vectors are determined
as ground truths for identified objects, such as vehicles and
pedestrians.

In various embodiments, vision data and related data are
organized by timestamps and corresponding timestamps are
used to synchronize the two data sets. In some embodiments,
timestamps are used to synchronize a time series of data,
such as a sequence of images and a corresponding sequence
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of related data. The data may be synchronized at capture
time. For example, as each element of a time series is
captured, a corresponding set of related data is captured and
saved with the time series element. In various embodiments,
the time period of the related data is configurable and/or
matches the time period of the time series of elements. In
some embodiments, the related data is sampled at the same
rate as the time series elements.

In various embodiments, only by examining the time
series of data can the ground truth be determined. For
example, analysis of only a subset of vision data may
misidentify objects and/or their properties. By expanding the
analysis across the entire time series, ambiguities are
removed. For example, an occluded vehicle may be revealed
earlier or later in the time series. Once identified, the
sometimes-occluded vehicle can be tracked throughout the
entire time series, even when occluded. Similarly, object
properties for the sometimes-occluded vehicle can be
tracked throughout the time series by associating the object
properties from the related data to the identified object in the
vision data. In some embodiments, the data is played back-
wards (and/or forwards) to determine any points of ambi-
guity when associating related data to vision data. The
objects at different times in the time series may be used to
help determine object properties for the objects across the
entire time series.

In various embodiments, a threshold value is used to
determine whether to associate an object property as a
ground truth of an identified object. For example, related
data with a high degree of certainty is associated with an
identified object while related data with a degree of certainty
below a threshold value is not associated with the identified
object. In some embodiments, the related data may be
conflicting sensor data. For example, ultrasonic and radar
data output may conflict. As another example, distance data
may conflict with map data. The distance data may estimate
a school zone begins in 30 meters while information from
map data may describe the same school zone as starting in
20 meters. In the event the related data has a low degree of
certainty, the related data may be discarded and not used to
determine the ground truth.

In some embodiments, the ground truth is determined to
predict semantic labels. For example, a detected vehicle can
be labeled based on a predicted distance and direction as
being in the left lane or right lane. In some embodiments, the
detected vehicle can be labeled as being in a blind spot, as
a vehicle that should be yielded to, or with another appro-
priate semantic label. In some embodiments, vehicles are
assigned to roads or lanes in a map based on the determined
ground truth. As additional examples, the determined ground
truth can be used to label traffic lights, lanes, drivable space,
or other features that assist autonomous driving.

At 209, the training data is packaged. For example, an
element of vision data received at 201 is selected and
associated with the ground truth determined at 207. In some
embodiments, the element selected is an element of a time
series. The selected element represents sensor data input,
such as a training image, to a machine learning model and
the ground truth represents the predicted result. In various
embodiments, the selected data is annotated and prepared as
training data. In some embodiments, the training data is
packaged into training, validation, and testing data. Based
on the determined ground truth and selected training ele-
ment, the training data is packaged to train a machine
learning model to predict the results related to one or more
related auxiliary sensors. For example, the trained model can
be used to accurately predict distances and directions of
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objects with results similar to measurements using sensors
such as radar or lidar sensors. In various embodiments, the
machine learning results are used to implement features for
autonomous driving. The packaged training data is now
available for training a machine learning model.

FIG. 3 is a flow diagram illustrating an embodiment of a
process for training and applying a machine learning model
for autonomous driving. For example, input data including
a primary and secondary sensor data is received and pro-
cessed to create training data for training a machine learning
model. In some embodiments, the primary sensor data
corresponds to image data captured via an autonomous
driving system and the secondary sensor data corresponds to
sensor data captured from an emitting distance sensor. The
secondary sensor data may be used to annotate the primary
sensor data to train a machine learning model to predict an
output based on the secondary sensor. In some embodi-
ments, the sensor data corresponds to sensor data captured
based on particular use cases, such as the user manually
disengaging autonomous driving or where distance esti-
mates from vision data vary significantly from distance
estimates from secondary sensors. In some embodiments,
the primary sensor data is sensor data of vision sensors 101
of FIG. 1 and the secondary sensor data is sensor data of one
or more sensors of additional sensors 103 of FIG. 1. In some
embodiments, the process is used to create and deploy a
machine learning model for deep learning system 100 of
FIG. 1.

At 301, training data is prepared. In some embodiments,
sensor data including image data and auxiliary data is
received to create a training data set. The image data may
include still images and/or video from one or more cameras.
Additional sensors such as radar, lidar, ultrasonic, etc. may
be used to provide relevant auxiliary sensor data. In various
embodiments, the image data is paired with corresponding
auxiliary data to help identify the properties of objects
detected in the sensor data. For example, distance and/or
velocity data from auxiliary data can be used to accurately
estimate the distance and/or velocity of objects identified in
the image data. In some embodiments, the sensor data is a
time series of elements and is used to determine a ground
truth. The ground truth of the group is then associated with
a subset of the time series, such as a frame of image data.
The selected element of the time series and the ground truth
are used to prepare the training data. In some embodiments,
the training data is prepared to train a machine learning
model to only estimate properties of objects identified in the
image data, such as the distance and direction of vehicles,
pedestrians, obstacles, etc. The prepared training data may
include data for training, validation, and testing. In various
embodiments, the sensor data may be of different formats.
For example, sensor data may be still image data, video data,
radar data, ultrasonic data, audio data, location data, odom-
etry data, etc. The odometry data may include vehicle
operation parameters such as applied acceleration, applied
braking, applied steering, vehicle location, vehicle orienta-
tion, the change in vehicle location, the change in vehicle
orientation, etc. In various embodiments, the training data is
curated and annotated for creating a training data set. In
some embodiments, a portion of the preparation of the
training data may be performed by a human curator. In
various embodiments, a portion of the training data is
generated automatically from data captured from vehicles,
greatly reducing the effort and time required to build a robust
training data set. In some embodiments, the format of the
data is compatible with a machine learning model used on a
deployed deep learning application. In various embodi-
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ments, the training data includes validation data for testing
the accuracy of the trained model. In some embodiments, the
process of FIG. 2 is performed at 301 of FIG. 3.

At 303, a machine learning model is trained. For example,
a machine learning model is trained using the data prepared
at 301. In some embodiments, the model is a neural network
such as a convolutional neural network (CNN). In various
embodiments, the model includes multiple intermediate
layers. In some embodiments, the neural network may
include multiple layers including multiple convolution and
pooling layers. In some embodiments, the training model is
validated using a validation data set created from the
received sensor data. In some embodiments, the machine
learning model is trained to predict an output of a sensor
such as a distance emitting sensor from a single input image.
For example, a distance and direction property of an object
can be inferred from an image captured from a camera. As
another example, a velocity vector of a neighboring vehicle
including whether the vehicle will attempt to merge is
predicted from an image captured from a camera.

At 305, the trained machine learning model is deployed.
For example, the trained machine learning model is installed
on a vehicle as an update for a deep learning network, such
as deep learning network 107 of FIG. 1. In some embodi-
ments, an over-the-air update is used to install the newly
trained machine learning model. For example, an over-the-
air update can be received via a network interface of the
vehicle such as network interface 113 of FIG. 1. In some
embodiments, the update is a firmware update transmitted
using a wireless network such as a WiFi or cellular network.
In some embodiments, the new machine learning model may
be installed when the vehicle is serviced.

At 307, sensor data is received. For example, sensor data
is captured from one or more sensors of the vehicle. In some
embodiments, the sensors are vision sensors 101 of FIG. 1.
The sensors may include image sensors such as a fisheye
camera mounted behind a windshield, forward or side-
facing cameras mounted in the pillars, rear-facing cameras,
etc. In various embodiments, the sensor data is in the format
or is converted into a format that the machine learning model
trained at 303 utilizes as input. For example, the sensor data
may be raw or processed image data. In some embodiments,
the sensor data is preprocessed using an image pre-processor
such as image pre-processor 105 of FIG. 1 during a pre-
processing step. For example, the image may be normalized
to remove distortion, noise, etc. In some alternative embodi-
ments, the received sensor data is data captured from ultra-
sonic sensors, radar, LiDAR sensors, microphones, or other
appropriate technology and used as the expected input to the
trained machine learning model deployed at 305.

At 309, the trained machine learning model is applied. For
example, the machine learning model trained at 303 is
applied to sensor data received at 307. In some embodi-
ments, the application of the model is performed by an Al
processor such as Al processor 109 of FIG. 1 using a deep
learning network such as deep learning network 107 of FIG.
1. In various embodiments, by applying the trained machine
learning model, one or more object properties such as an
object distance, direction, and/or velocity are predicted from
image data. For example, different objects are identified in
the image data and an object distance and direction for each
identified object are inferred using the trained machine
learning model. As another example, a velocity vector of a
vehicle is inferred for a vehicle identified in the image data.
The velocity vector may be used to determine whether the
neighboring vehicle is likely to cut into the current lane
and/or the likelihood the vehicle is a safety risk. In various
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embodiments, vehicles, pedestrians, obstacles, lanes, traffic
control signals, map features, speed limits, drivable space,
etc. and their related properties are identified by applying the
machine learning model. In some embodiments, the features
are identified in three-dimensions, such as a three-dimen-
sional velocity vector.

At 311, the autonomous vehicle is controlled. For
example, one or more autonomous driving features are
implemented by controlling various aspects of the vehicle.
Examples may include controlling the steering, speed, accel-
eration, and/or braking of the vehicle, maintaining the
vehicle’s position in a lane, maintaining the vehicle’s posi-
tion relative to other vehicles and/or obstacles, providing a
notification or warning to the occupants, etc. Based on the
analysis performed at 309, a vehicle’s steering and speed
may be controlled to maintain the vehicle safely between
two lane lines and at a safe distance from other objects. For
example, distances and directions of neighboring objects are
predicted and a corresponding drivable space and driving
path is identified. In various embodiments, a vehicle control
module such as vehicle control module 111 of FIG. 1
controls the vehicle.

FIG. 4 is a flow diagram illustrating an embodiment of a
process for training and applying a machine learning model
for autonomous driving. In some embodiments, the process
of FIG. 4 is utilized to collect and retain sensor data for
training a machine learning model for autonomous driving.
In some embodiments, the process of FIG. 4 is implemented
on a vehicle enabled with autonomous driving whether the
autonomous driving control is enabled or not. For example,
sensor data can be collected in the moments immediately
after autonomous driving is disengaged, while a vehicle is
being driven by a human driver, and/or while the vehicle is
being autonomously driven. In some embodiments, the
techniques described by FIG. 4 are implemented using the
deep learning system of FIG. 1. In some embodiments,
portions of the process of FIG. 4 are performed at 307, 309,
and/or 311 of FIG. 3 as part of the process of applying a
machine learning model for autonomous driving.

At 401, sensor data is received. For example, a vehicle
equipped with sensors captures sensor data and provides the
sensor data to a neural network running on the vehicle. In
some embodiments, the sensor data may be vision data,
ultrasonic data, radar data, LiDAR data, or other appropriate
sensor data. For example, an image is captured from a high
dynamic range forward-facing camera. As another example,
ultrasonic data is captured from a side-facing ultrasonic
sensor. In some embodiments, a vehicle is affixed with
multiple sensors for capturing data. For example, in some
embodiments, eight surround cameras are affixed to a
vehicle and provide 360 degrees of visibility around the
vehicle with a range of up to 250 meters. In some embodi-
ments, camera sensors include a wide forward camera, a
narrow forward camera, a rear view camera, forward look-
ing side cameras, and/or rearward looking side cameras. In
some embodiments, ultrasonic and/or radar sensors are used
to capture surrounding details. For example, twelve ultra-
sonic sensors may be affixed to the vehicle to detect both
hard and soft objects.

In various embodiments, the captured data from different
sensors is associated with captured metadata to allow the
data captured from different sensors to be associated
together. For example, the direction, field of view, frame
rate, resolution, timestamp, and/or other captured metadata
is received with the sensor data. Using the metadata, differ-
ent formats of sensor data can be associated together to
better capture the environment surrounding the vehicle. In
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some embodiments, the sensor data includes odometry data
including the location, orientation, change in location, and/
or change in orientation, etc. of the vehicle. For example,
location data is captured and associated with other sensor
data captured during the same time frame. As one example,
the location data captured at the time that image data is
captured is used to associate location information with the
image data. In various embodiments, the received sensor
data is provided for deep learning analysis.

At 403, the sensor data is pre-processed. In some embodi-
ments, one Or more pre-processing passes may be performed
on the sensor data. For example, the data may be pre-
processed to remove noise, to correct for alignment issues
and/or blurring, etc. In some embodiments, one or more
different filtering passes are performed on the data. For
example, a high-pass filter may be performed on the data and
a low-pass filter may be performed on the data to separate
out different components of the sensor data. In various
embodiments, the pre-processing step performed at 403 is
optional and/or may be incorporated into the neural network.

At 405, deep learning analysis of the sensor data is
initiated. In some embodiments, the deep learning analysis
is performed on the sensor data received at 401 and option-
ally pre-processed at 403. In various embodiments, the deep
learning analysis is performed using a neural network such
as a convolutional neural network (CNN). In various
embodiments, the machine learning model is trained offline
using the process of FIG. 3 and deployed onto the vehicle for
performing inference on the sensor data. For example, the
model may be trained to predict object properties such as
distance, direction, and/or velocity. In some embodiments,
the model is trained to identify pedestrians, moving vehicles,
parked vehicles, obstacles, road lane lines, drivable space,
etc., as appropriate. In some embodiments, a bounding box
is determined for each identified object in the image data and
a distance and direction is predicted for each identified
object. In some embodiments, the bounding box is a three-
dimensional bounding box such as a cuboid. The bounding
box outlines the exterior surface of the identified object and
may be adjusted based on the size of the object. For
example, different sized vehicles are represented using dif-
ferent sized bounding boxes (or cuboids). In some embodi-
ments, the object properties estimated by the deep learning
analysis are compared to properties measured by sensors and
received as sensor data. In various embodiments, the neural
network includes multiple layers including one or more
intermediate layers and/or one or more different neural
networks are utilized to analyze the sensor data. In various
embodiments, the sensor data and/or the results of deep
learning analysis are retained and transmitted at 411 for the
automatic generation of training data.

In various embodiments, the deep learning analysis is
used to predict additional features. The predicted features
may be used to assist autonomous driving. For example, a
detected vehicle can be assigned to a lane or road. As another
example, a detected vehicle can be determined to be in a
blind spot, to be a vehicle that should be yielded to, to be a
vehicle in the left adjacent lane, to be a vehicle in the right
adjacent lane, or to have another appropriate attribute.
Similarly, the deep learning analysis can identify traffic
lights, drivable space, pedestrians, obstacles, or other appro-
priate features for driving.

At 407, the results of deep learning analysis are provided
to vehicle control. For example, the results are provided to
a vehicle control module to control the vehicle for autono-
mous driving and/or to implement autonomous driving
functionality. In some embodiments, the results of deep
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learning analysis at 405 are passed through one or more
additional deep learning passes using one or more different
machine learning models. For example, identified objects
and their properties (e.g., distance, direction, etc.) may be
used to determine drivable space. The drivable space is then
used to determine a drivable path for the vehicle. Similarly,
in some embodiments, a predicted vehicle velocity vector is
detected. The determined path for the vehicle based at least
in part on a predicted velocity vector is used to predict
cut-ins and to avoid potential collisions. In some embodi-
ments, the various outputs of deep learning are used to
construct a three-dimensional representation of the vehicle’s
environment for autonomous driving which includes iden-
tified objects, the distance and direction of identified objects,
predicted paths of vehicles, identified traffic control signals
including speed limits, obstacles to avoid, road conditions,
etc. In some embodiments, the vehicle control module
utilizes the determined results to control the vehicle along a
determined path. In some embodiments, the vehicle control
module is vehicle control module 111 of FIG. 1.

At 409, the vehicle is controlled. In some embodiments,
a vehicle with autonomous driving activated is controlled
using a vehicle control module such as vehicle control
module 111 of FIG. 1. The vehicle control can modulate the
speed and/or steering of the vehicle, for example, to main-
tain a vehicle at a safe distance from other vehicles and in
a lane at an appropriate speed in consideration of the
environment around it. In some embodiments, the results are
used to adjust the vehicle in anticipation that a neighboring
vehicle will merge into the same lane. In various embodi-
ments, using the results of deep learning analysis, a vehicle
control module determines the appropriate manner to oper-
ate the vehicle, for example, along a determined path with
the appropriate speed. In various embodiments, the result of
vehicle controls such as a change in speed, application of
braking, adjustment to steering, etc. are retained and used for
the automatic generation of training data. In various embodi-
ments, the vehicle control parameters may be retained and
transmitted at 411 for the automatic generation of training
data.

At 411, sensor and related data are transmitted. For
example, the sensor data received at 401 along with the
results of deep learning analysis at 405 and/or vehicle
control parameters used at 409 are transmitted to a computer
server for the automatic generation of training data. In some
embodiments, the data is a time series of data and the various
gathered data are associated together by a remote training
computer server. For example, image data is associated with
auxiliary sensor data, such as distance, direction, and/or
velocity data, to generate a ground truth. In various embodi-
ments, the collected data is transmitted wirelessly, for
example, via a WiFi or cellular connection, from a vehicle
to a training data center. In some embodiments, metadata is
transmitted along with the sensor data. For example, meta-
data may include the time of day, a timestamp, the location,
the type of vehicle, vehicle control and/or operating param-
eters such as speed, acceleration, braking, whether autono-
mous driving was enabled, steering angle, odometry data,
etc. Additional metadata includes the time since the last
previous sensor data was transmitted, the vehicle type,
weather conditions, road conditions, etc. In some embodi-
ments, the transmitted data is anonymized, for example, by
removing unique identifiers of the vehicle. As another
example, data from similar vehicle models is merged to
prevent individual users and their use of their vehicles from
being identified.
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In some embodiments, the data is only transmitted in
response to a trigger. For example, in some embodiments, an
inaccurate prediction triggers the transmitting of image
sensor and auxiliary sensor data for automatically collecting
data to create a curated set of examples for improving the
prediction of a deep learning network. For example, a
prediction performed at 405 to estimate the distance and
direction of a vehicle using only image data is determined to
be inaccurate by comparing the prediction to distance data
from an emitting distance sensor. In the event the prediction
and actual sensor data differ by more than a threshold
amount, the image sensor data and related auxiliary data are
transmitted and used to automatically generate training data.
In some embodiments, the trigger may be used to identify
particular scenarios such as sharp curves, forks in the roads,
lane merges, sudden stops, intersections, or another appro-
priate scenario where additional training data is helpful and
may be difficult to gather. For example, a trigger can be
based on the sudden deactivation or disengagement of
autonomous driving features. As another example, vehicle
operating properties such as the change in speed or change
in acceleration can form the basis of a trigger. In some
embodiments, a prediction with an accuracy that is less than
a certain threshold triggers transmitting the sensor and
related auxiliary data. For example, in certain scenarios, a
prediction may not have a Boolean correct or incorrect result
and is instead evaluated by determining an accuracy value of
the prediction.

In various embodiments, the sensor and related auxiliary
data are captured over a period of time and the entire time
series of data is transmitted together. The time period may be
configured and/or be based on one or more factors such as
the speed of the vehicle, the distance traveled, the change in
speed, etc. In some embodiments, the sampling rate of the
captured sensor and/or related auxiliary data is configurable.
For example, the sampling rate is increased at higher speeds,
during sudden braking, during sudden acceleration, during
hard steering, or another appropriate scenario when addi-
tional fidelity is needed.

FIG. 5 is a diagram illustrating an example of capturing
auxiliary sensor data for training a machine learning net-
work. In the example shown, autonomous vehicle 501 is
equipped with at least sensors 503 and 553 and captures
sensor data used to measure object properties of neighboring
vehicles 511, 521, and 561. In some embodiments, the
captured sensor data is captured and processed using a deep
learning system such as deep learning system 100 of FIG. 1
installed on autonomous vehicle 501. In some embodiments,
sensors 503 and 553 are additional sensors 103 of FIG. 1. In
some embodiments, the data captured is the data related to
vision data received at 203 of FIG. 2 and/or part of the
sensor data received at 401 of FIG. 4.

In some embodiments, sensors 503 and 553 of autono-
mous vehicle 501 are emitting distance sensors such as
radar, ultrasonic, and/or lidar sensors. Sensor 503 is a
forward-facing sensor and sensor 553 is a right-side facing
sensor. Additional sensors, such as rear-facing and left-side
facing sensors (not shown) may be attached to autonomous
vehicle 501. Axes 505 and 507, shown with long-dotted
arrows, are reference axes of autonomous vehicle 501 and
may be used as reference axes for data captured using sensor
503 and/or sensor 553. In the example shown, axes 505 and
507 are centered at sensor 503 and at the front of autono-
mous vehicle 501. In some embodiments, an additional
height axis (not shown) is used to track properties in
three-dimensions. In various embodiments, alternative axes
may be utilized. For example, the reference axis may be the
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center of autonomous vehicle 501. In some embodiments,
each sensor of sensors 503 and 553 may utilize its own
reference axes and coordinate system. The data captured and
analyzed using the respective local coordinate systems of
sensors 503 and 553 may be converted into a local (or world)
coordinate system of autonomous vehicle 501 so that the
data captured from different sensors can be shared using the
same frame of reference.

In the example shown, field of views 509 and 559 of
sensors 503 and 553, respectively, are depicted by dotted
arcs between dotted arrows. The depicted fields of views 509
and 559 show the overhead perspective of the regions
measured by sensors 503 and 553, respectively. Properties of
objects in field of view 509 may be captured by sensor 503
and properties of objects in field of view 559 may be
captured by sensor 553. For example, in some embodiments,
distance, direction, and/or velocity measurements of objects
in field of view 509 are captured by sensor 503. In the
example shown, sensor 503 captures the distance and direc-
tion of neighboring vehicles 511 and 521. Sensor 503 does
not measure neighboring vehicle 561 since neighboring
vehicle 561 is outside the region of field of view 509.
Instead, the distance and direction of neighboring vehicle
561 is captured by sensor 553. In various embodiments,
objects not captured by one sensor may be captured by
another sensor of a vehicle. Although depicted in FIG. 5 with
only sensors 503 and 553, autonomous vehicle 501 may be
equipped with multiple surround sensors (not shown) that
provide 360 degrees of visibility around the vehicle.

In some embodiments, sensors 503 and 553 capture
distance and direction measurements. Distance vector 513
depicts the distance and direction of neighboring vehicle
511, distance vector 523 depicts the distance and direction of
neighboring vehicle 521, and distance vector 563 depicts the
distance and direction of neighboring vehicle 561. In various
embodiments, the actual distance and direction values cap-
tured are a set of values corresponding to the exterior surface
detected by sensors 503 and 553. In the example shown, the
set of distances and directions measured for each neighbor-
ing vehicle are approximated by distance vectors 513, 523,
and 563. In some embodiments, sensors 503 and 553 detect
a velocity vector (not shown) of objects in their respective
fields of views 509 and 559. In some embodiments, the
distance and velocity vectors are three-dimensional vectors.
For example, the vectors include height (or altitude) com-
ponents (not shown).

In some embodiments, bounding boxes approximate
detected objects including detected neighboring vehicles
511, 521, and 561. The bounding boxes approximate the
exterior of the detected objects. In some embodiments, the
bounding boxes are three-dimensional bounding boxes such
as cuboids or another volumetric representation of the
detected object. In the example of FIG. 5, the bounding
boxes are shown as rectangles around neighboring vehicles
511, 521, and 561. In various embodiments, a distance and
direction from autonomous vehicle 501 can be determined
for each point on the edge (or surface) of a bounding box.

In various embodiments, distance vectors 513, 523, and
563 are related data to vision data captured in the same
moment. The distance vectors 513, 523, and 563 are used to
annotate distance and direction of neighboring vehicles 511,
521, and 561 identified in the corresponding vision data. For
example, distance vectors 513, 523, and 563 may be used as
the ground truth for annotating a training image that includes
neighboring vehicles 511, 521, and 561. In some embodi-
ments, the training image corresponding to the captured
sensor data of FIG. 5 utilizes data captured from sensors
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with overlapping fields of view and captured at matching
times. For example, in the event a training image is image
data captured from a forward facing camera that only
captures neighboring vehicles 511 and 521 and not neigh-
boring vehicle 561, only neighboring vehicles 511 and 521
are identified in the training image and have their corre-
sponding distance and directions annotated. Similarly, a
right-side image capturing neighboring vehicle 561 includes
annotations for the distance and direction of only neighbor-
ing vehicle 561. In various embodiments, annotated training
images are transmitted to a training server for training a
machine learning model to predict the annotated object
properties. In some embodiments, the captured sensor data
of FIG. 5 and corresponding vision data are transmitted to a
training platform where they are analyzed and training
images are selected and annotated. For example, the cap-
tured data may be a time series of data and the time series
is analyzed to associate the related data to objects identified
in the vision data.

FIG. 6 is a diagram illustrating an example of predicting
object properties. In the example shown, analyzed vision
data 601 represents the perspective of image data captured
from a vision sensor, such as a forward-facing camera, of an
autonomous vehicle. In some embodiments, the vision sen-
sor is one of vision sensors 101 of FIG. 1. In some
embodiments, the vehicle’s forward environment is captured
and processed using a deep learning system such as deep
learning system 100 of FIG. 1. In various embodiments, the
process illustrated in FIG. 6 is performed at 307, 309, and/or
311 of FIG. 3 and/or at 401, 403, 405, 407, and/or 409 of
FIG. 4.

In the example shown, analyzed vision data 601 captures
the forward facing environment of an autonomous vehicle.
Analyzed vision data 601 includes detected vehicle lane
lines 603, 605, 607, and 609. In some embodiments, the
vehicle lane lines are identified using a deep learning system
such as deep learning system 100 of FIG. 1 trained to
identify driving features. Analyzed vision data 601 also
includes bounding boxes 611, 613, 615, 617, and 619 that
correspond to detected objects. In various embodiments, the
detected objects represented by bounding boxes 611, 613,
615, 617, and 619 are identified by analyzing captured
vision data. Using the captured vision data as input to a
trained machine learning model, object properties such as
distances and direction of the detected objects are predicted.
In some embodiments, velocity vectors are predicted. In the
example shown, the detected objects of bounding boxes 611,
613, 615, 617, and 619 correspond to neighboring vehicles.
Bounding boxes 611, 613, and 617 correspond to vehicles in
the lane defined by vehicle lane lines 603 and 605. Bounding
boxes 615 and 619 correspond to vehicles in the merging
lane defined by vehicle lane lines 607 and 609. In some
embodiments, bounding boxes used to represent detected
objects are three-dimensional bounding boxes (not shown).

In various embodiments, the object properties predicted
for bounding boxes 611, 613, 615, 617, and 619 are pre-
dicted by applying a machine learning model trained using
the processes of FIGS. 2-4. The object properties predicted
may be captured using auxiliary sensors as depicted in the
diagram of FIG. 5. Although FIG. 5 and FIG. 6 depict
different driving scenarios—FIG. 5 depicts a different num-
ber of detected objects and in different positions compared
to FIG. 6—a trained machine learning model can accurately
predict object properties for the objects detected in the
scenario of FIG. 6 when trained on sufficient training data.
In some embodiments, the distance and direction is pre-
dicted. In some embodiments, the velocity is predicted. The
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predicted properties may be predicted in two or three-
dimensions. By automating the generation of training data
using the processes described with respect to FIGS. 1-6,
training data for accurate predictions is generated in an
efficient and expedient manner. In some embodiments, the
identified objects and corresponding properties can be used
to implement autonomous driving features such as self-
driving or driver-assisted operation of a vehicle. For
example, a vehicle’s steering and speed may be controlled to
maintain the vehicle safely between two lane lines and at a
safe distance from other objects.

Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:
1. A method implemented by a processor included in a
vehicle, the method comprising:
receiving image data based on an image captured using a
camera of the vehicle, the image data depicting an
object within the vehicle’s surrounding environment;

providing the received image data as input to a trained
machine learning model, wherein the trained machine
learning model is configured to generate output without
using distance information from emitting distance sen-
sors and wherein the trained machine learning model
was trained using a sequence of training images cor-
related to information from additional distance sensors;
and

generating at least one control command corresponding to

operation of a vehicle, based in part, on outputs from
the trained machine learning model.

2. The method of claim 1, wherein the output of the
trained machine learning model includes a distance to the
object.

3. The method of claim 1, wherein the output of the
trained machine learning model includes a direction of the
object with respect to the vehicle.

4. The method of claim 1, wherein the output of the
trained machine learning model includes a velocity vector of
a different vehicle associated with a threshold likelihood of
merging into a lane of the vehicle.

5. The method of claim 1, wherein the output of the
trained machine learning model includes a three-dimen-
sional representation of the vehicle’s surrounding environ-
ment, the three-dimensional representation including a
three-dimensional bounding box associated with the object.

6. The method of claim 1, wherein the outputs of the
trained machine learning model include information indica-
tive of drivable space about the vehicle, and wherein the at
least one control command is usable for navigating towards
a target destination based on the drivable space.

7. The method of claim 1, wherein the at least one control
command is associated with adjusting one or more of speed,
acceleration, steering or braking.

8. The method of claim 1, wherein the at least one control
command controls the vehicle to maintain the vehicle’s
position within a lane.

9. The method of claim 1, wherein the at least one control
command causes the vehicle to merge into another lane.

10. The method of claim 1, wherein the at least one
control command causes adjustment of the vehicle’s speed
and lane positioning to account for merging vehicles.
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11. The method of claim 1, wherein the at least one
control command controls brake lights, turns signals, and/or
headlights.
12. The method of claim 1, wherein the object represents
a different vehicle, and wherein the different vehicle is
determined to be in a blind spot of the vehicle.
13. A computer program product, the computer program
product being embodied in a non-transitory computer read-
able storage medium and comprising computer instructions,
which when executed by a system of one or more processors
included in a vehicle, cause the one or more processors to
perform operations comprising:
receiving image data based on an image captured using a
camera of the vehicle, the image data depicting an
object within the vehicle’s surrounding environment;

providing the received image data as input to a trained
machine learning model, wherein the trained machine
learning model is configured to generate output without
using distance information from emitting distance sen-
sors and wherein the trained machine learning model
was trained using a sequence of training images cor-
related to information from additional distance sensors;
and

generating at least one control command corresponding to

operation of a vehicle, based in part, on outputs from
the trained machine learning model.

14. The computer program product of claim 13, wherein
the outputs of the trained machine learning model include
information indicative of drivable space about the vehicle,
and wherein the at least one control command is usable for
navigating towards a target destination based on the drivable
space.

15. The computer program product of claim 13, wherein
the at least one control command is associated with adjust-
ing one or more of speed, acceleration, steering or braking.
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16. The computer program product of claim 13, wherein
the object represents a different vehicle, and wherein the
different vehicle is determined to be in a blind spot of the
vehicle.

17. A system, comprising:

one or more processors included in a vehicle, the proces-

sors being configured to:
receive image data based on an image captured using a
camera of the vehicle, the image data depicting an
object within the vehicle’s surrounding environment;

provide the received image data as input to a trained
machine learning model, wherein the trained machine
learning model is configured to generate output without
using distance information from emitting distance sen-
sors and wherein the trained machine learning model
was trained using a sequence of training images cor-
related to information from additional distance sensors;
and

generate at least one control command corresponding to

operation of a vehicle, based in part, on outputs from
the trained machine learning model.

18. The system of claim 17, wherein the outputs of the
trained machine learning model include information indica-
tive of drivable space about the vehicle, and wherein the at
least one control command is usable for navigating towards
a target destination based on the drivable space.

19. The system of claim 17, wherein the at least one
control command is associated with adjusting one or more of
speed, acceleration, steering or braking.

20. The system of claim 17, wherein the object represents
a different vehicle, and wherein the different vehicle is
determined to be in a blind spot of the vehicle.
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